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Abstract

A general paradigm for recognizing 3D objects is offered, and applied to some geometric primitives
(spheres, cylinders, cones, and tori). The assumption is that a curve on the surface, or a pair
of intersecting curves, has been measured with high accuracy (for instance, by a sensory robot).
Differential invariants of the curve(s) are then used to recognize the surface. The motivation is
twofold: the output of some devices is not surface range data, but such curves. Also, a considerable
speedup is obtained by using curve data, as opposed to surface data which usually contains a much
higher number of points.

We survey global, algebraic methods for recognizing surfaces, and point out their limitations.
After introducing some notions from differential geometry and elimination theory, the differential
and “semi-differential” approach to the problem is described, and novel invariants which are based

on the curve’s curvature and torsion are derived.

The support of this research by the Office of Naval Research under Grant N000144-95-1-0521 is gratefully
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1 Introduction and Previous Work

One task an intelligent system should be able to accomplish is recognition. Usually, a recognition
system derives some characteristics of an object it examines, and tries to match them against similar
characteristics in a data base. Suppose, for instance, that one is dealing with 2D objects, and tries
to recognize them, given their boundaries. Typically, there is a finite data base these boundaries
are matched against; various invariants have been derived, some global and some local (1, 17, 26],
to solve this problem. These are quantities that do not change under certain transformations
(Euclidean, affine, projective), and therefore can be used to recognize an object even if it has been
altered by such transformations.

Here, a different problem is addressed — recognizing a surface in 3D space, using one-dimensional
information. Specifically, we assume that some measuring device has sampled a curve, or a pair of
intersecting curves, on the surface. Given the curve(s), the goal is to recognize the surface. Typical
sensors which are the source of such curves are measuring devices, such as coordinate measuring
machines, manufactured by the Brown & Sharpe Company (Figure 1), or the IBM RS/1 Cartesian
robot. Such devices can measure 3D curves with very high accuracy; for instance, the typical error
range for a coordinate measuring machine is 0.01 mm.

In (3], an algorithm is presented for determining the axis of a surface of revolution, using the
information measured by a tactile sensor which can also estimate the two principal curvatures (see
Section 3.2). In [7], the parameters of a cylinder are computed from structured light patterns.

Some previous work has addressed the problem of recognizing various surfaces given their oc-
cluding contours [14, 10]. However, the aggregate of possible curves on a surface is usually much
larger than the aggregate of its occluding contours, and may contain far more complicated curves;
for instance, the occluding contour of a sphere is always a circle, while there are a great many 3D
curves — some of which have rather complicated structures — on a sphere.

Clearly, we are facing a different type of recognition problem from the one previously described,
which is usually solved by matching against a data base. It is impossible to build a data base which
contains, say, all the curves on a sphere, or even a dense sampling of these curves. Therefore, we
have to discover curve characteristics which will enable us to answer a question such as “can this
curve, after a certain transformation, be embedded into a sphere?”, as opposed to “can this curve,
after a certain transformation, be superimposed onto curve No. 129 in the data base?”.

One way to proceed is straightforward: fit an implicit polynomial to the curve’s points, and,
from its type, determine the surface. This is the algebraic approach [19, 12]. However, this approach
will fail if the curve does not lie on a single “primitive” (sphere, cylinder etc), but “crosses over”
between two or more primitives (see Section 2.1 and Figure 3). In that case, the global algebraic
fit will give us a meaningless result. A very rich theory of local, or differential, invariants was

developed to solve this problem [5, 4, 8, 24, 21]. In Section 2 we quickly survey the global approach




Figure 1: High-accuracy measuring device and a curve it measured on a cylinder.

as applied to our problems, but the focus of this paper is on the local approach.

Natural curve characteristics to use for recognition are curvature and torsion, as they do not
change under rigid transformations. Since we are dealing with 3D data, a rigid transformation
is usually a general enough model. So, the goal is to discover invariants, depending on a curve’s
curvature and torsion, which provide a necessary condition for it to lie on a certain type of surface.

Let us demonstrate this by a simple 2D example: a plane curve can be embedded into a circle
if and only if its curvature is constant. So, in this case, the invariant is the derivative of the
curvature. We don’t expect to find such simple invariants for curves lying on 3D surfaces; a well-
known example is the fact that a 3D curve is planar if its torsion is zero, but this is an exceptional
case.

In the sequel, we derive invariants which are necessary conditions for a curve, or an intersection
of two curves, to lie on a sphere, cylinder, cone, or torus. These depend only on the curvature
and torsion at a point on the curve (or the curvatures and torsions of the two curves at their
intersection point). We also derive some “semi-differential” invariants, which use not only the
differential properties of the curve, but a few points on it. Such invariants have been widely used
in computer vision for recognizing plane and space curves [4, 21, 18]; their main advantage is that

they allow us to use derivatives of lower order than are needed for “purely differential” invariants.




2 The Algebraic Approach

Implicit polynomials can be used to describe 2D and 3D objects. Some references which address

the fitting of implicit polynomials are [22, 2, 13, 23, 20]. One can then use polynomial invariants

to recognize the objects [19, 12, 9, 11]. Let us briefly describe how a sphere, cone, cylinder and

torus can be recognized using such invariants. Note that the first three objects can be fitted with a

quadratic, and the torus with a quartic. Suppose, then, that we have succeeded in fitting the data

with a quadratic. We can write this as

2.1

XAX 4+ (0,X)+s=0 (1)

where A is a 3 x 3 matrix, v a vector in R3, and s a scalar. It is easy to verify that

o If the object is a sphere, A has three positive and identical eigenvalues. It is then trivial to

extract the sphere’s center and radius.

e If the object is a cylinder, A has two positive and identical eigenvalues, and one zero eigen-

value; also, the axis of the cylinder is in the direction of the eigenvector with zero eigenvalue,

and it is trivial to extract its radius.

e If the object is a cone, A has two identical positive eigenvalues and one negative eigenvalue.

The axis of the cone is in the direction of the eigenvector with the negative eigenvalue. It is

then trivial to extract the cone’s opening angle and apex.

o If the object is a torus, its general equation is

Eior=((z—a)’ + (y =02+ (2 —¢)* + R —1%)? — 4 R*((z — a)* +
(¥ =0)*+ (2~ )’ ~ ((z ~ a)ns + (y - b)ng + (2 — ¢)ns)?)

where (a, b, c) is its center point, (n;,n2,n3) is a unit vector perpendicular to the plane over

which the torus lies, and R (r) is the major (minor) radius.

It is trivial to extract a,b,c from E,,, (for instance, differentiating E,,, three times wrt z
gives 24z — 24a). To extract r and R, note that substituting {z = a,y = b,z = ¢} in Ey,
. . . 2 2 2 .
gives r* + R* — 2 R?r?, and substituting {z = a,y = b,z = ¢} in g 32‘2“ +2 355"’ + 2 a]i;”- gives
~12R? - 1272 + 8 R?n3% 4+ 8 R%ny% + 8 R2n3? = —4R? — 12r2. Tt is trivial to extract R and
r from these two identities. After R, 7, a, b, ¢ have been recovered, it is trivial to recover

(nl, N2, ns)-

Number of Points Needed

Experiments on curve data show that a relatively high number of points is necessary to achieve

reliable algebraic fitting. For instance, for the cylinder data we have used (Figure 1), more than
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200 points are required for a reliable fit. We are not sure why this happens; apparently, the fact
that the points lie on a curve, which is a “one-dimensional entity”, results in singularities when
trying to fit the points with an implicit polynomial which, by its nature, is appropriate for fitting
“two-dimensional entities”.

On the other hand, when using the differential invariants proposed here, a far smaller number

of points was necessary; usually, invariants were computed using 10 points or so.

2.2 Applying Invariants to Segmentation

Since the algebraic approach to recognition given a curve may fail, because it can pass through
various geometric primitives, one may try to segment the curve, using some notion of discontinuity,
and then use algebraic techniques for each segment. We now show that this is not always easy, by
constructing a curve which is infinitely differentiable, yet crosses over from a sphere to a cylinder.
Define

s(t):{ 0 t<0

exp(7#) t>0

It is well known that this function is smooth (infinitely differentiable) at every point, and that
all its derivatives at t = 0 are zero. Using s(2), it is trivial to construct smooth functions s;(2), s2(t)
on the interval [0, c0) such that 5,(0) = 0,s;(t) = 1 for t > 1, s5(t) = v/3 for 0 < ¢ < 1, and s5() is

monotonically increasing for ¢ > 1 (see Figure 2).

sl 52

a

Figure 2: Auxiliary functions used to construct the curve in Figure 3.




Define a curve ¢(t) as follows:

. (s1(t) cost,s1(t)sint, (/4 —s¥t) 0<t<1
ct =
(cost,sint,sy(t)) 1<t<2

It is easy to see that ¢(t) is a smooth curve which crosses over from a sphere with radius 2 to

a cylinder with radius 1 (at ¢t = 1). The curve is displayed in Figure 3. Next to it, we plot the

curvature, torsion, derivative of the curvature, and a spherical invariant for curves (see Section 5,
Equation 10). It is interesting to see that, although the curvature and torsion are continuous, there
is a very sharp break in the spherical invariant, at the point at which the curve crosses over from
the sphere to the cylinder; this demonstrates that the kind of invariants presented here can succeed

where segmentation by “ordinary” differential properties (curvature, torsion etc.) fails.
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Figure 3: Demonstrating how our invariants manage to detect when a curve crosses over from one

geometric primitive (sphere) to another (cylinder), although the curvature, torsion etc. cannot

detect this crossing over.




3 Mathematical Preliminaries — Some Differential Geometry and Elimination Theory

In the sequel, a few concepts from geometry and algebra are required. We proceed to define them

and state some of their important properties.

3.1 Some Differential Geometry of Curves

A curve in 3D Euclidean space is a differentiable function ¢ : [0,1] — R3. At each point ¢(), three
orthogonal unit vectors are associated with the curve: its tangent vector T, which points in the
direction of the curve’s derivative, its normal vector N, and its binormal vector B, which is equal
to the vector (cross) product of T and N. This triplet of vectors is called the Frenet trihedron at
c(t).

In addition, two scalars are associated with each point on the curve. These are the curvature k
and torsion 7. Intuitively speaking, the curvature measures how “bent” the curve is; for instance,
the curvature of a circle is equal to the inverse of its radius. The torsion measures the speed at
which the curve moves out of the plane (the so-called osculating plane) which locally approximates
it; thus, the torsion of a planar curve is zero.

The curvature and torsion can be computed from the parameterization of the curve:

_ ICI X C”l
'

(c’ X c") ¢
l¢" x "2
% and T are invariant to translation and rotation; this makes them especially attractive for recog-
nition purposes.
The celebrated Frenet formulas relate the Frenet trihedron to the curvature and torsion. If the

curve is parameterized by arclength (that is, |¢'| = 1), the following hold:

'

T =&kN
N' = kT - 1B
B =rN

A concept of crucial importance to our work is the local canonical form. Let us see how it is
derived. Assume that the curve is parameterized by its arclength s. From Taylor’s expansion, we

have

2

_ 0 [ 0 8 n 0 83 " 84 (4) 35 (5) 5
o(s) = e(0) + 5¢(0) + 5:¢"(0) + 576" (0) + 5;e0(0) + £eD(0) + of°)
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¢'(0) is equal to the tangent vector T at t = 0. Using the first Frenet formula, ¢’ (0) = T° = &kN.
Therefore, ¢ (0) = (kN) = k' N + kN' = k' N + k(—kT — TB) = k' N — kT — k7B.
Similarly, we can derive expressions for the fourth and fifth derivatives. Substituting them into

the Taylor series gives

2 3(k! N — 27 _
C(S)=C(0)+ST+8;N+S(KN 1<6T kT B)

s* (k"N -2k 7B - 3kK' T — k3N — k7' B — k72N)
24 + )

N — 4kg" T—3K”TB—3F2,TIB—3I€,T2N—3ﬁl2T—

S 5 "

720"
6k’ N +K*T + k37 B—x7 B —3krr N+ k*r2T + kr®B) + o(s%)

From now on, we shall omit the o(s%) part. We are allowed to do so as long as the powers of s used

are bounded by 5.

3.2 Some Differential Geometry of Surfaces

Locally, a surface S in 3D Euclidean space is a differentiable image of an open set O in R2.
Formally, it is the set of triplets {(z(u,v), y(u,v), 2(u,v)) (u,v) € O}. The tangent plane to S at
the point ((z(u,v),y(u,v),z(u,v)) is the plane spanned by (Zu, Yu, 2u) and (24, Yy, 2»). The normal
to S at (u,v) is the unit vector pointing in the direction of (Zu, Yus 2u) X (T, Yo, 2y); it is therefore
perpendicular to the tangent plane.

In the sequel, we shall use the fact that if C; and C, are curves which intersect on S , then the
normal to § at their intersection point is a unit vector in the direction of the vector product of
their tangent vectors. This holds unless these tangent vectors are parallel.

The intersection of § with any plane containing N is called a normal section of S. Note that
the normal section is determined by a unit vector » in the tangent plane, which is the direction
in which the plane containing N intersects the tangent plane. Thus, we may speak of a normal
section in the direction v.

The curvature of a normal section is called the normal curvature. The maximal such curvature,
k1, and the minimal, k., are called the principal curvatures of S. Let us denote their directions by
k.i and k-; It can be proved that they are orthogonal and that,if v = k-i cosf + k_; sin @, the normal
curvature in the direction v equals

ki cos? @ + ko sin? 0 (3)
The product A = kqk; is called the Gaussian curvature, and the mean H = b;é:!n is called the
mean curvature.

Suppose a curve C lies on the surface S. Then if its curvature is Kc, and the normal curvature

of § in the direction of C’s tangent vector is Ks, we have

Ks = Ko cosd (4)
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where 0 is the angle between Ng, the normal to S, and Ng, the normal to C.

3.3 Elimination Theory

Elimination theory is a branch of algebra which deals with eliminating variables from equations.
It is especially useful for determining when a system of equations has a root. Let us start with
the simplest case ~ two polynomials in one variable, p = p,z"™ + p,_12™ ! + ... + po, and ¢ =
g™ + @rm_12™ L + ..+ qo.

To compute the resultant of p and g, one first constructs an (n+m) X (n 4+ m) matrix as follows.
Its first row consists of p’s coefficients, followed by zeros. The second row is obtained by translating
the first one to the right, etc. When this can be done no more, the same process is repeated for ¢’s
coefficients. The resultant is equal to the determinant of this matrix. For instance, the resultant

of az* + bz3 + ca? + dz + e and Az3 + Bz? + Cz + D is the determinant of

0 0 a b ¢ d e 0
0 0 a b ¢ d e
A B C D 0 0 0
0 A B CD GO0 0
0 0 A B C DO

\0 0 0 A B C D

A basic result in elimination theory is that the resultant is equal to zero if p and g have a
common root. ‘

It is also possible to eliminate variables from polynomial systems with more equations than
variables. For example, if we have three polynomial equations with two variables, there is an
expression in the coefficients of these polynomials which is zero if the system has a solution. In
general, elimination is a difficult problem, and it is not always possible to explicitly write down

these expressions.

4 The General Method

In this section, a general overview of our method for deriving differential and semi-differential
invariants for curves lying on surfaces is provided.

We wish to find conditions on the curvature and torsion of a curve C' which will allow us to
determine if it could possibly lie on a certain geometric object OB.7, which is described by a generic

implicit equation, P(z,y,z) = 0.




The method by which these conditions is derived proceeds as follows. First, we use the local
canonical form to write down an expression for C in the vicinity of a point M we have measured
on OBJ; we also assume that we have measured k, 7, and their derivatives, as well as the Frenet
trihedron at M. These are all determined from the derivatives of C; so, if we have accurate
measurements for C in the vicinity of M, we can directly calculate them. Since x and 7 do not
depend on the pose of the C, we are allowed to translate and rotate OBJ and the curve on it, thus
obtaining a new curve C. Denote the rotated and translated object by OBJ rew-

Every condition on 7 and « that we derive for C is, of course, also a condition for C. The reason
we apply rigid transformations to OBJ is because these allow us to make assumptions about C’s
Frenet trihedron which result in simpler calculations; this will be explained in the sequel. Let
P(z,y, z) be the implicit equation defining OBJ new-

Next, we substitute C’s local canonical form into P(z,y, z); This results in a Taylor series
in s. This series has to be identically zero, because C is contained in OBJ new, and, therefore,
has to satisfy the equation which defines OB J ey, This gives us a set of equations, one for each
coefficient in the Taylor series. Next, we eliminate from these equations everything but C’s curvature
and torsion. For one curve, we usually have to eliminate the Frenet trihedron. For two curves,
we will show that the Frenet trihedrons are known and therefore need not be eliminated. In both
cases, the elimination gives an expression that has to be zero; and this is the sought invariant.

We now proceed to apply this paradigm to specific objects.

5 The Case of a Sphere

In order to derive a differential invariant for a curve ¢(s) to lie on a sphere, we need to use only the

following part of ¢’s local canonical form:

'
I‘6283 3

() = e(0) + (s - )T+ (SF 4 SEN - &

il
6

Since translation and rotation do not change the curvature and torsion, we may assume, without

kTB + o(s%) (5)

loss of generality, that the point M at which our measurements of k and 7 were taken is at the

origin, and that the sphere lies on the XY plane. Hence the sphere’s equation is
22+y°+(z-R)?*-R?=0 (6)

Let us also assume, without loss of generality, that the sphere has been rotated so that T = (1,0,0)
(see Figure 4).

Since NV is a unit vector perpendicular to T, it has to be of the form N = (0, cosa,sin a) for
some a; also, B =T x N = (0, —sina, cos ).

Note that the rigid transformation applied to the sphere has reduced the Frenet trihedron to

a trihedron depending only on the single parameter «. This is important, because we have to
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Figure 4: Rotating and translating the sphere.

eliminate the trihedron, in order to obtain a condition depending only on « and 7; and, in general,
the more variables we have to eliminate, the more equations are necessary, and there is a danger
that the solution will be extremely complicated.
Substituting these T, N, B in Equation 5 gives the following expressions for the components of
c(s):
z(s)=s-— ﬁ

6

s?kcosa  s3(k cosa + kT sin o
y(s) = —5 + & 5 )

S2ksina  $3(k sina — kT cosa
)= Shsne | #0 sna. )

Substituting these expressions into the equation of the sphere (6) gives a Taylor series in s,

which has to be identically zero; therefore all its coefficients are zero. The expression is rather
complicated, so we don’t write it down here; However, its constant and linear coefficients are

identically zero. Its coefficient of s is

1-k(sina)R=0 (M
Its coefficient of s is
k (sina)R — kr (cos )R = 0 (8)
From (7) and (8), together with
s 2 2 _
sin‘a+cos“a—-1=0 (9)
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(viewing them as algebraic equations by treating sin @ and cos o as algebraic variables), we can

eliminate sin @ and cos e, to obtain the identity

2 k2712 4 (/{’)2
- k4r2

This gives us a differential invariant for a curve lying on a sphere; namely, the expression

R (10)

k*r? + (;c')2
k4r2
has to be a constant. Note that we can immediately extract the sphere’s radius.

It should be noted that this condition has been derived before, using other methods (see, for
instance, [6], page 25). We have nonetheless decided that it would be worthwhile to show how it
is derived by using the local canonical form and elimination theory. This derivation will hopefully
make it easier to follow the derivation of differential invariants for curves on the cylinder and cone,

presented in the following sections.

6 The Case of a Cylinder

6.1 One Curve, Known Radius

We now proceed to derive differential invariants for a curve which lies on a cylinder. To the best
of our knowledge, such invariants have not been derived before. The method is similar to the one
used for the sphere; however, the mathematical details are considerably more complicated.

Given a point M on a curve which lies on a cylinder, we can assume without loss of generality
that the cylinder has been translated and rotated so that M is at the origin, and the cylinder lies
on the XY plane (recall that this does not alter the curvature and torsion). Let us further assume
that it has been rotated by some angle 8 so that the tangent vector at M is aligned with the X-axis
(see Figure 5).

Hence T' = (1,0,0), and the cylinder’s equation becomes
(zcosf+ysinB)’+ (2 —R?-R*=0 (11)

As in the case of the sphere, it follows that N = (0,cosa,sina) for some a, and B =
(0, —sina, cos ).
We now substitute T', N, B into the local canonical form (2). This gives the following expressions
for the components of ¢(s):
P2 stkk S (—4rk" - 3K+ K4+ k2r?)

As)=s- == ——5—+ 120
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Figure 5: Rotating and translating the cylinder.

! .
s’kcosa  §*(k cosa+ kT sina)

y(s) = +
() 3 g
" ! . I .
s*(k cosa+2k Tsina—k3cosa+ kT sina — kT2 cos @)
24
5
S " " . ror !9
-m—o(n cosa+3k Tsina+3k T sina—3kK T cosa —
I3 3 . "o, ’ 3 -
6Kk cosa — K°T sina+ KT sina—3KTT cosa — KT°sin @)
. I .
(s) sznsma_l_ s$3(k sina — kT cosa)+
2(s) =
2 6
"o, J; . i N
s*(k” sina— 2k T cosa — K3sina — kT cosa — kT sin @)
24
85 m " ] ro .
1—26(.% sina~3k Tcosa—3K T cosa—3K T sina —

', " ro.
6 x°k sina + K°T cosa — KT cosa — 3KTT sina + KT° cosa)

Substituting these into the cylinder’s equation (11) gives, as before, a Taylor series in s which
has to be identically zero. This expression is huge and we do not write it down here; we need only
the coefficients of the powers of s between 0 and 5.

The coefficients of the constant and linear terms are identically zero.

For the other terms, we obtain the following expressions, after substituting cosa = z,sina =

y,cos 3 = z,sin B = w:
For the coefficient of s2

13




~2kyR+22% = 0 (12)

For the coefficient of 3

6 zwkz — 2K yR+2k7zR = 0 (13)

For the coefficient of s*

8zwKT Yy — 2n"yR+4K"r:cR+2n3yR+2n'r'zR+QHTZyR— (14)

6n2z222+82wﬁlm—822n2+652 =0

In the sequel, it will be beneficial to use a simplified version of (14). Note that we can subtract
from (14) the product of (12) by an appropriate constant, and eliminate the coefficient of 22 in (14)
(it already has a yR term, so we are not adding anything). Similarly, we can subtract from the
new equation an appropriate multiple of (13), to remove from it the term with the monomial zzw
— also, without adding anything new, as the set of monomials of (14) contains that of (13). After
grouping, we can write the simplified (14) as

Ao + A12%2% + AszR + AsyR + Agyzw = 0 (15)

Note that we can easily compute the A;’s as functions of x and 7. Hence (15) is equivalent to
(14), but much simpler. This will turn out to be useful.

For the coefficient of s°, we obtain the equation

—2£" yR — 20 s%yr 22% — 20 kK’ 2222 — 30 2wz — 10 zwkr2e + 10 zwkT ¥+
20 2wk 7y + 10 2wk’ & — 2K3T ¢ R+ 6k T TR — 30 22Kk +6K T2yR + (16)
12n2ﬁlyR+ 6k 7 2R+ 2k zR — 2k73zR + 20 kK + 6K,7'7"yR =0

in addition we have

?+y’—-1=0 (17)

Z24+wi-1=0 (18)

Assume now that the radius R is known. In that case, we have to eliminate z,y, z,w from
Equations (12,13,14,17,18) (note that we need at least five equations in order to eliminate four
unknowns). All our attempts to directly do this, using various packages for symbolic computation,

have failed; however, it is possible to proceed as follows. First solve the system consisting of the

four simplest equations (12,13,17,18); then substitute the solution into (14).
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Using the Maple symbolic computation program, it was possible to find a solution for Equations

(12,13,17,18). This solution uses an auxiliary polynomial that we denote by p1(6):

p1(8) = 81 k362 R? + (18 R?x' *k* — 18 k672 R? + 81 k© — 162 k3 R2)6° +
36 k*R6% T + (—81 k% + 81 k®R% — 36 Rkt A A ) K272 R2K" +

R +18 k82 R?)6* — 36 k*RE%k T + (18 Rkt —2k2r2R2% — 2 R2’5,4)52 + B2

Let ¢ be a root of p;(§). Then the solution of (12,13,17,18) is

2

LR 9Ktqt — ¢2k272 + @2k'% — O Kkiq2 — K
B q(9¢r?+ 2k TR)

_ —9x" Re*q* + & Rg*k%7% + n’quz — 9k Rkq® — K°R+ 9ktr 7

w=
3¢2(9gr2+ 2" T R)ffcz\/—9"4q4—q2n‘-272+q2,¢’2_9,§4q2_ﬁl

2

q(9gx2+2x" T R)

_ ROK'¢* — Pk 4 q%'z - 9k%g? - n’z)
B q(9¢k?+ 2k T R)K

T=gq
Substituting these expressions into (14) and simplifying, we obtain the following identity:

(18 k572 R? — 45 R?%k'“k* + 27 R2" k5 + 162 k°R? — 81k5)¢® + (27 k57 R — 547+ RE)G +
(=36 k572R? — K2r2R%’> 4 67k k3 B2+ 3k R2k" k — 2k*r*R? — 5 R?%'* + T2 R* Kt +
162k — 372R2%" k° — 162 k3R? — 27 R2%" k®)q* + 90 7k’ RK*q® + (=35 R%" k + 6 B2 +
9k2r2R2% — 27 szc'zk‘*)q2 - R%" =0

Let us denote this polynomial by p2(g).

Now we know that p;() and p2() must have a common root; therefore, their resultant must be
zero. This resultant is, therefore, an invariant for a curve lying on a cylinder.

Recalling the definition of the resultant of two polynomials (Section 3.3), we can write down
the resultant of p1() and pp(). It is a determinant whose elements depend on the curvature and
torsion; if the curve lies on a cylinder, this determinant has to be zero, and this is an invariant for

a curve lying on a cylinder.
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Figure 6: Logarithm of the resultant of p;() and py(), as a function of R, for a point sampled from

a curve on a cylinder of radius 2.

6.2 One Curve, Unknown Radius
6.2.1 Search Numerically for the Correct Radius

Suppose we do not know the radii of the cylinders in the data-base.
There are two ways to proceed. We can simply use the trivial observation that, if we substitute the
correct R into p;() and py(), we will get two polynomials whose resultant is zero. We can therefore
conduct a simple, one-dimensional search for R which minimizes this resultant.

Experience has shown us that this simple numerical algorithm works quite well. For example,
Figure 6 shows, a plot of the logarithm of the resultant, for values of k and 7 measured on a curve

on a cylinder with a radius of 2. We can clearly see a strong minimum at the correct radius.

6.2.2 Solve for the Correct Radius

The second method for the case in which the radius is unknown is to eliminate R,z,y,z,w from
Equations (12,13,15,16,17,18). This can be done by solving Equations (12,13,15,17,18) and substi-
tuting the solution in Equation (16); if this gives zero, it means that these six equations have a
common solution, which is a necessary condition for the curve to lie on a cylinder. This is why it
was important to define Equation (15), the simplified version of (14); we could not find a reason-
able solution with (14). However, it turns out that Equations (12,13,15,17,18) do have a ;elatively
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simple solution, expressed as follows. z is the root of the following equation:

81k8A, 26" 4+ (—162A,°k® — 547 A A k" +162Kk%4; Ap + 162 A5 A, £7)6%° +

(1087 Ay Ak ~54KTApg Ay 7+ 8L A2®k® +162k"Ag As — 18 A 72k8 A, + 81 k84,% —
Bk Ay Agk® — 547 Ay Agk® —324Ag Ap k7 + 9724, 265 + 9k A, 2k — 324 k5 A1 Ay +
81 A2k% + 18 k%A k' Ag + 81 Ag2k8)6% + (1625345 Ao — 18 Ag 7265 Ay +

18k 4,2k " + 1087 Ay Ask® — 162 As*k® — 18724, k5 + 18 Ay T2 k%A, + 6 k34, Tk Ay —
36 k% A; K Ap — 18 Ag2r%k5 + 108kTAp Ay 7 — 36 kK T Ag Ag + 18 K3 A5 K Ao +

108K Ay As k% — 324K7Ag Ag +6 Ag 76 Ay + 162 A5 A; &7 — 2Tk A,k — 54T Ay Ay K7 —
81 A%k — 162 k%402)6° + (36 kK T Ag Ag — 54K Ay Agk® — 12434, 7K " Ag +

27 K?12A42K:4 +18 Ap?m2 k8 + A%kt + 9 T2A42KZ6 —54k"Ag A+ K:,4A02 +81k%4,% +
16247 A0 As + 81 As2k5 + 2 4272k " — 54T Ay Ag kS — 6 Ag T3k A, —

36k3As k' Ap + 18 Ag12k5 Ay — 36K Ap?k  + 18 K4 A1 K Ag)6t + (=2 Ao2r2k%K” +
6k3A, Th Ao+ 18K A0k +18K3Ask Ao — Ok A 2K —

2k 402)82 + k" Ay

Note that this is really a sixth-degree equation, as only even powers of § appear. After z is solved
for, we can easily extract y from Equation (17). Then, after substituting the known values of z
and y in Equations (12,13,18) we can solve for the remaining unknowns w, z and R:

Let

€=ririe? — 2kr a:yn’ + yznlz + 9 ktz?y?
Then
§2 — 9 k%2202 V(T 2 — UK Syx?
{w= _ Root(e 9;:2;2 YkTz — YK ),z = Root(e 82 — 9 k*z%y?), R = 9_”__&} (19)

(by Root of an equation, we mean the root of the equation when viewed as an equation in §). The
equations in (19) are trivial to solve by taking square roots.

The reader may ask why we did not apply this trick to simplify the solution of the equations
for the case in which the radius is known. If we had done that, it would not have been possible to
obtain a function of x and 7 alone; the z would still have been there! And, as long as it is there,
we cannot find a condition on  and 7, as desired, but only a condition on z, x and 7.

There is also a direct solution to the system of equations (12,13,15,17,18), in which all the
unknowns R, z,y, 2, w are written in terms of k, 7, and their derivatives; however, that expression
is truly enormous, covering three full pages even in a small format! For all practical purposes,
it is better to use the solution above, which first extracts 2 and y and then solves for the other

unknowns.
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6.2.3 Comparison of Methods

While the second method is straightforward and does not require any search (as opposed to the
first method), it has the drawback of requiring the fifth derivative of the curve, which appears in
Equation (16). Calculating the third derivative of the curvature and the second derivative of the
torsion requires the fifth derivative of the curve.) The first method requires a numerical search for
the correct radius, but uses only the fourth derivative of the curve. Depending on how accurate

the measurements are, one may opt for using the first or the second method.

6.3 The Case of a Cylinder with Two Intersecting Curves and Unknown Radius

Suppose we have two curves on the cylinder, intersecting at a point M. For instance, one can design
a sensory robot to traverse a point twice, in two different directions. Another possible source is an
intersecting pattern of structured light rays. It turns out that a particularly simple invariant can
be written in this case.

We refer to the curves as “first” and “second” (it makes no difference which is which, of course).
As noted in Section 3.2, two intersecting curves on the surface allow us to compute its normal A
(denoted this way to prevent confusion with N, the normal to a curve). We may, as before, translate
and rotate the cylinder so that the intersection point M is at the origin, the cylinder lies on the XY
plane, and the tangent vector to the first curve is (1,0,0). The difference is that now, as opposed to
when we only had a single curve, we know the normal N and the binormal B of the new curves; this
is because we now know that the rotation and translation not only move M to the origin and align
the tangent to the first curve with (1,0,0), but also align A with (0,0,1). Let us look at the triplet
(T, N, B) for the first curve (before the rotation). We can calculate the inner products (N,T) and
(N, N). These inner products do not change after the rotation of the curve; if N is rotated into
Nnew, then, since T is rotated into (1,0,0), we have the equality (Npew, (1,0,0)) = (N,T), and,
since NV is rotated into (0,0,1), we have the equality (Nyeyw,(0,0,1)) = (N,N). Since Nypeyp is a
unit vector, we can recover it; and, since we know the tangent and normal of the new curve, we
know its binormal, which is equal to their vector product. Following a similar argument, we also
know the Frenet trihedron of the (new) second curve .

As before, let 3 denote the angle at which the cylinder is aligned relative to the XY plane.
Let us denote the tangent, normal and binormal of the first curve by (1,0,0), (0,cos @, sin &) and
(0, —sin a, cos @), and those of the second curve by (T1,T3,0), (N1, N2, Ns), (B1, By, B3) (remember
that all these coordinates are now known). Note that the z-coordinate of both tangents has to be
zero, as they are both in the tangent plane which, after the rigid transformation, is the XY plane.

Substituting these expressions into the local canonical form, then into the cylinder’s equation,

and equating coefficients to zero, results in the following equations (K is the curvature of the second

curve):
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For the coefficient of s2, first curve, we have

222 —2ksin(a)R = 0 (20)

For the coefficient of s3, first curve, we have

6 zwk cos(a) — 2k sin(a)R + 2k7 cos(a)R = 0 (21)

For the coefficient of s2, second curve, we have

272 —2KN3sR+22°T\2 - 21?22 + 42Ty wTp = 0 (22)

Also
24+uwi-1=0 (23)

(where, as before, cos f = z,sin § = w).
Eliminating w, 2 and R from (20,21,22,23) results in the identity

2 2

9 Ty 2k*sin?acos?a — 6 7 Tp Ty k3cos?asin a — 9 K Nak3cos?asin a + k272152 cos’a +

2

’ . ' . 12 .
6 k2T Tok sinfacosa —2 kK TTy’sinacosa+ K Ty2sin%a =0

(remember that « is known, and does not have to be eliminated).
This is an invariant for two intersecting curves which can be used to test whether they lie on
a cylinder. The invariant depends on the curvature and torsion of one curve, and the curvature of

the other; therefore, it does not require any derivatives of order higher than 3.

7 The Case of a Cone with Two Intersecting Curves

We have not addressed the problem of finding invariants for a cone using a single curve; because
a cone has more degrees of freedom than a sphere or a cylinder, this would necessitate using the
sixth derivative of the curve to express such an invariant.

We will show in this section how two intersecting curves yield an invariant for the cone. We will
not go into all the details, as the method resembles the one used for a cylinder with two intersecting
curves.

First, the cone is rotated and translated so that its apex is at the origin, and the point of
intersection of the two curves, M, lies on the XY plane, which is also the tangent plane at M.
Then, it is rotated in the XY plane so that the tangent vector of the first curve is (1,0,0). As we

did for the cylinder, we can extract the tangent, normal, and binormal vectors to the two curves at

19




20

Figure 7: Rotating and translating the cone.

their new locations; denote the normal to the first curve at M by (0, cos8,sin 8). Note that now
M does not lie at the origin, but at an (unknown) distance yo from it. The (unknown — as for the
cylinder) rotation angle of the cone in the XY plane is denoted by @, and the (unknown) rotation
angle around the Y axis (Figure 7) is denoted 6; this is just half of the cone’s opening angle.

It is then a trivial matter to write down the equation of the rotated and translated cone, and to
substitute into it the local canonical forms of the two curves. As before, the coefficients of the two
resulting Taylor series have to be zero, resulting in the following equations. Let K and 7 denote
the curvature and torsion of the second curve, and T1, etc. the components of its Frenet trihedron
vectors. 5 stands for sin 8, C for cos 3, = for cos@, y for sin 8, z for cos o, w for sin @ (remember

that § and C are known, and do not have to be solved for).
For the coefficient of s2, first curve, we have

22222 + 22kSyoy = 0 (24)

For the coefficient of s3, first curve, we have
- 22k Cyoy + 6 yzwkS + 2 2k Syoy - 6222wkC = 0 (25)
which can be written more compactly as
Arz’zw + Ay zyyo + Aszyw = 0 (26)
For the coefficient of s2, second curve, we have

2222272 — 4 222wy Tp + 222752 — 2 2?Ty22% + 22K N3 Yoy =0 (27)
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Just as for the cylinder, we can subtract from (27) appropriate multiples of (24) and (25), and

obtain the simpler form

A 2? + Aszyyo + Agz?zw = 0 (28)

For the coefficient of s3, second curve, we have
b b

6 yzzK N3Ty + 6 yzwK NaTy + 62Ty KNy — 6 22Ty KNy 2> — 22 KT B3 yo y +
2zK1Nsyoy — 6222wTy KNy — 62%2wK N, Ty + 62222V KNy = 0 (29)

which, as before, can be reduced to

Arzyw + Aszyz + Aoz’ + Aozyyo = 0 (30)

Note that the 4;’s can be readily computed from the known quantities — the curvature, torsion,
and Frenet trihedron of the two curves.

We also have the equations

22492 -1=0 (31)

and

witz22-1=0 (32)
It is possible to eliminate {z,y, z, w, yo} from these six equations (24,26,28,30,31,32), and obtain

—28SkABAs Aro Ay A7 — A2 A® A7  As + 2 SkAs® Ay A7 As A3 Ag — SkAs A2 A% A7 Ag ~
S%k2Ac2 As® Ag® As — A3 A9 As® + SkAy As? Ag?As® — S?k%As? Ay Az Ag Aro —

S%k2 A3 Ag Ao Ag As + 2 5%k A Ag® Ay Ag Az Ag — SPk2A,2 A2 Ag% As —

S3k3Ag A2 A 2 A7 As — 25%Kk2A42 A1 As Ag As Ag + 25363 Ag Ag Ay A7 As Ag +

SkAs As? Az Ajo Ay Ag — 2 Sk As A3 Ao As Ag + SPkB AP A% Ag® + Sk As Ay Ay As®As +
S3KkBAP AP AT + SkALP A% Ag? + SPK3 AT Ay A3 A% + 2 Ay As®Ag As® Ao —

2 Ag Az Ag As®Ag A7 — 3SkAc Ag A3 Ag As Ag Ag + Sk AP As®A10® + 2 SkAg Az Ag As® Ay Ag +
25%k2A43A) Ag Az Ao — 2 SkAs A) Ag Az Ajg As + S?k2As?Ag Az Ag Ag A7 + SkAS A2 AL? —
S3k3Ac Ay Az Ag Ay Ag — SkAg As Ag Ay A7 As + SkAs Az Ag Ay As®Ar +

SkAc?As®Ag A1p As + S?k?As2 Az Ag Ay As Ag — 25%k2 A2 A% A7 As +

S?k%Ag As Ay A7 Ay — SPKPAg Ay Ay A7 Az Aro — Ag AP A7 As — 35%K2 Ag Ay A1 A7 As Ag As +
2 A42A3 Aro Az A7 As — SkAg Ay Ay A72Ag As + SkAg Ay Ay A7 Ag Arp As —

S?k%2Ae%Ag Ay A7 Ag Ag + S?k% A Ag A12 A7 As Ag + SkAs A1 2 A2 45 =0
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This is an invariant for two curves on a cone. It depends on the curvature and torsion of the two
curves; therefore, it does not require any derivatives of order higher than three. This is an invariant

for two curves on a cone.

8 Numerical Computation of Derivatives

The algorithms suggested here require computing the derivatives of a curve in 3D space. The prob-
lem of computing high-order derivatives from discrete data was addressed in [25]. The derivatives
at each point are calculated by convolving appropriate differentiation filters with the given curve.
One way of deriving such filters is based on fitting high-order polynomials to the data curve and
differentiating the polynomials. We do not need to do the fitting for each actual curve; it is only
done in deriving the filters.

In deriving the filters, the data curve f is approximated by a linear combination of orthogonal
polynomials of orders 0,...,1I: l

Fi(-2) = w(2) Y a:Pi(a)
i=0

where Pi(z) are polynomials which are orthonormal with respect to a weight function w(z). The
coefficients a; are determined by the condition that the polynomial fits the curve in the sense of
(weighted) least squares. It can be proved that if the curve f is a polynomial of order up to /, than

the above filter yields an exact k-th derivatives when the coefficients a; are
k
a; = P(0)

In practice, good results are obtained for any reasonably smooth f (not only polynomials), as long
as the the order / of the filter is larger than the desired order k of the derivative. However, a high
! requires a filter with a wide support.

Discrete versions of this method on a finite interval are described in detail in [15]. In particular,
the Krawtchouk and the discrete Chebyshev polynomials were studied and closed form formulas
for them were given up to fifth order. However, it was shown in [25] that continuous polynomials,
defined on a finite interval, are just as effective but much simpler to calculate. Good results were
obtained using the Legendre and continuous Chebyshev polynomials.

For example, see Figure 8 for the derivative of the spherical invariant (Equation 10), for the
curve plotted in Figure 3, when noise of variance equal to 5 percent of the distance between the
points was added to it. Derivatives were computed using the method described in [25]. The
derivative is relatively small for the part of the curve that lies on the sphere (0 < ¢t < 1), and
significantly changes when the curve crosses over to the cylinder (at t = 1). Note that computing
the invariant’s derivatives requires the first derivative of the torsion and the second derivative of

the curvature — that is, the fourth derivative of the curve.
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Figure 8: Derivative of the spherical invariant (Equation 10) for the curve in Figure 3, after noise
had been added to it. Note the change in the derivative when the curve crosses over from the

sphere to the cylinder (at t = 1).

9 Semi-Differential Invariants

In this section we study curve invariants which use only curvature (this requires computing only the
first and second derivatives of the curve). We also assume that the only primitives the recognition
system can encounter are spheres, cylinders, cones, and tori. When the information from one point
is not enough to uniquely determine the object, we will use an additional point or two on the curve

to help disambiguate the object.

9.1 Object Recognition from Two Intersecting Curves

Given two intersecting curves C; and C,, we extract Ty, Ny, By, ke1, T2, No, Bo, Koo at the inter-
section point M. These are the Frenet trihedrons and the curvature for both curves respectively.
Recall that Ng, the normal to the surface at M, equals T} x T3.

For each curve we compute 6, the angle between Ng and the curve’s normal. The surface normal
curvature equals Ky = k¢ cosf, and kN8 = K1 sin? B + k2 cos? B, where k3, K, are the principal
curvatures of the surface at M, and § is the angle between the tangent to the curve and &3, the
second principal direction.

Given two curves we have two equations for the surface normal curvature in the three unknowns
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K1, ko, and 8:

KNg1 = K1 sin? 8 + k5 cos? I5}

k1 8in*(8 + @) + k3 cos?(8 + ¢), (33)

KNg2

where ¢ is the angle between T} and T5. Usually, it is impossible to solve such a system; however,
if we know in advance that the geometric primitives can only be spheres, cylinders, cones, and tori,

it is possible to identify them and extract their parameters.

Sphere

In this case k1 = Ky and consequently kyg1 = KNg2- For all other objects (cylinders, cones, and
tori) the two principal curvatures are not equal; therefore, the two normal curvatures are identical
only in the degenerate case in which the angles between the curves’ tangents and ¥ are equal.
Therefore, if the surface normal curvatures corresponding to the two curves are equal, we can
assume with high probability that we are dealing with a sphere.

The sphere’s radius is then R = 1/ky,, and its center is at M + RNg. Using an additional

point (Section 8.2), we can determine whether the object is indeed a sphere.

Cylinder

If the given object is a cylinder, its parameters can be recovered as follows. Since K1 = 0, the
surface normal equations are reduced to two equations with two unknowns. Solving them, we can
recover k2 and the principal directions &7, K. The cylinder’s radius is R = 7}2—, and the orientation
of its axis is K1. A point on the axis is

C =M+ RNg.

It is important to note that this does not prove that the ob ject is a cylinder. That has to be

verified using an additional point on the curve (see Section 9.2).

Cone

Assume the object is a cone. As for the cylinder, k; = 0, and we can recover Ko and the principal
directions Ry,K2. The radius of the cone at M is R = :—2cos «, where « is the cone’s opening

angle. The apex is located at M + &3 %, and the axis orientation is K3 cosa + K3 sin . o can be

determined from an additional point on the curve (see Section 9.2).

Torus

From (33) we cannot recover the torus, because the number of unknowns is 3. We will parameterized

our solution as a parameter of 8. For a given 8, we can recover K1, k2. The values of &y, ky change
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on the torus as a function of v, the angle between the major radius of the torus, R, and the vector

to the current point on the torus. x;, k2 are given as a function of v:

—cos 7y 1

KM= 5— )
R+ rcosy T

where R and r are the major and minor radii of the torus respectively (see Figure 9).

v
'
]
]
]
]
'
1
r
]
'
'
1

Figure 9: Torus.

Given k1, K2, we can recover R, r as follows:

1 1
R:—(i——)cosy r=—
K1 K K2

The orientation of the torus, Ny, can be recovered by: N; = Ngsin+y + Rz cosy. The center of the
torus is then at
C =M+ N+ (Ngcosy — Resiny)R

B and v can be determined by an additional point on the curve (see Section 9.2).

9.2 Verification Using an Additional Point

The hypothesis about an object and its parameters can be verified by using an additional point on

one of the curves. For the hypothesis to be correct, several constraints must be satisfied.

e The point M must lie on the surface. This means that if P is the object’s implicit equation,
P(M) =0.

o Tc, the curve’s tangent, must be orthogonal to Ng at the point. Thus

Ns -Tc = 0.

e If 0 is the angle between Ng and N¢, then ks = k¢ cos 8 (see Equation 4), where the value of

ks is determined by the principal curvatures k; and k, and the angle between them and T¢.
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Therefore, each additional point yields three additional equations which have to be satisfied.
These equations can be used to verify hypotheses or to determine the value of unknown parameters.
If the additional points are not on a curve, and we don’t have any differential properties asso-
ciated with them, we still have the first condition (they have to satisfy the surface equation). In

that case, we will need more points; this is a typical tradeoff for semi-differential invariants.

9.3 Object Recognition from One Curve

When two intersecting curves are given, we are able to recover Ng and thus we know the angle 6
between N5 and N¢. When we are given only one curve, 6 is an unknown parameter which has to

be recovered.

Sphere

In this case k; = k2, and consequently kNg = 1/R. For every value of 6, the surface normal and

the sphere’s radius are determined as follows, where (Tc, Nc¢, Be) are the Frenet trihedron of the

curve:
. 1
Ns = (cos@)N¢ + (sinf)Bo R = mocosd
We can then recover the center of the sphere,
Ns
M+RN5=M+T+BCtan9 (34)
C

Thus we have a family of possible spheres, parameterized by 6.

Given additional points, we can proceed as follows: either substitute them into the (hypothe-
sized) sphere’s equation, or (if they are on a curve) use the verification method described in Section
9.2. Alternatively, given two points on a curve, applying Equation(34) to both of them results in

four linear equations in cos;,tan #;,cosfs,, and tan ,. The solution is verified by checking if the

V1 —cos26;

" cosb;

two angles satisfy

tanf; =

Cylinder

In the case of the cylinder we know that k; = 0 and &y = 712-. Given a point M; on the curve, the
two unknowns are 6; and §;. When they are given, the cylinder is uniquely defined. Note that &3
is the axis of the cylinder, so it has to be the same for every point on the cylinder. We will now
use these facts to define R and & the axis of the cylinder as functions of 6, and B, (see Equations
33, 4):
_cos?py
Koy cosfy’
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Ng = cos8; N¢ + sin 61 Be

K1 = Tesin By 4 (To X Ns)cos By (35)

A point on the axis is

Ci1=M; + RNsy

Given an additional point, its 82 and 6, can be recovered as follows:

cos? By
KCQR

).

B2 = arcsin(T¢q - K1), 62 = arccos(

From them we can recover the point on the axis Cy closest to the second point, and both points

must lie on the cylinder’s axis, which is parallel to £3; therefore
(Cl - Cg) X KTi = 0,

which gives us two equations in two unknowns, which can be solved for 6; and ;.
These two points give the equation of the cylinder that passes through them and satisfies the
given constraints. In addition, from (35) 8, = arccos((T¢2 X Ns2) - K1), which gives an additional

constraint to verify that this is indeed a cylinder with the computed parameters.

Cone

The case of the cone is similar to that of the cylinder but slightly more complicated. Given two
points on a curve we would like to find the angles 6, 31,62, and B2. These angles parameterize
the local surface structure of the two points. At first we will exploit the fact that the line from
the point on the surface in the direction of K7 must pass through the tip of the cone. Thus we
have a constraint that the two such lines obtained from the two points must intersect. The point
C = P + k3 Ng lies on the central axis of the cone. Therefore we two additional constraints which
are due to the fact that Cy,Cs, and the tip of the cone lie on the same line. Finally, the angle of
the cone a must be the same for both surface points. As a is the angle between x7 and the axis of
the cone, we can write an additional constraint enforcing the uniqueness of . With the four above
mentioned constraints we can recover the values of the unknown angles and recover the shape of
the object.

As for the cylinder, these two points give the equation of the cone that passes through them
and satisfies the given constraints. However, an additional point is needed to verify that this is
indeed the real object.
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Torus

In order to be able to recover the seven parameters of the torus, we parameterize them by four
local parameters of one point. The parameters are 6, 3, k1, and 7. As described above these four
parameters are enough to describe the torus. In order to recover those parameters we need two
additional points because each point yields three constraints. Thus using three points we can

recover the shape of the torus and verify that it is indeed a torus.

9.3.1 Experimental Results

The algorithm for a single curve has been tested on real data obtained by the Brown & Sharpe
Company using their coordinate measuring machines (Figure 1). The data is a curve measured on
a cylinder. For each point on the curve Ty, N¢, Be, and k¢ are estimated. Using the algorithm
described above, the problem is reduced to solving for cos#; and cos B1, where all other parameters
are expressed as functions of these unknown values. The correct values must satisfy four equations
and must satisfy the constraints that the absolute values of the cosines and sines of the various
angles must be less than 1. The values of the unknowns are found using non-linear least squares
optimization techniques. We used the Levenberg-Marquardt procedure of the MINPACK library
[16].

We chose 200 pairs of points at random and ran the minimization procedure on them using
several initial conditions for the minimization. Even though the data is noisy, most pairs of points
yielded results close to the correct shape. The results were sorted according to the least-squares
error (LSE) of the four equations. We show the five cylinders with the smallest LSEs in Figure
10(a). One of these results and the original data are shown in Figure 10(b). It is important to note
that only the data for the two points and their derivatives mentioned above was used to recover
the shape of the cylinder. Additional points can then be used, if desired, to get a better estimate
of the shape.

10 Conclusions

A novel method of recognizing some surfaces, given curve(s) on them, was presented. It proceeds
by using invariants which are computed on curves, but which supply information about the type
of surfaces the curves can possibly lie on.

The method can use 3D curves derived from stereo and structured light; it is particularly useful
when given the output of measuring devices which produce such curves (for instance, sensory robots
and coordinate measuring machines).

The main advantage of the proposed method compared to algebraic methods is in its local

nature, which enables it to segment and recognize curves (and the surfaces they lie on) even if the
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(a) (b)

Figure 10: (a) The five recovered cylinders with the lowest LSE. (b) The recovered shape of the
cylinder and the data points.

curves lie on more than one geometric primitive. Also, it requires a far smaller number of curve

points than the algebraic method, to recognize a single primitive.
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